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[1] This work evaluates whether continuity between Advanced Very High Resolution
Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS)
normalized difference vegetation index (NDVI) is achievable for monitoring phenological
changes in Alaska. This work also evaluates whether NDVI can detect changes in start
of the growing season (SOS) in this region. Six quadratic regression models with NDVI as
a function of accumulated growing degree days (AGDD) were developed from 2001
through 2004 AVHRR and MODIS NDVI data sets for urban, mixed, and forested land
covers. Model parameters determined NDVI values for start of the observational period as
well as peak and length of the growing season. NDVI values for start of the growing
season were determined from the model equations and field observations of SOS made by
GLOBE students and researchers at University of Alaska Fairbanks. AGDD was
computed from daily air temperature. AVHRR and MODIS models were significantly
different from one another with differences in the start of the observational season as well
as start, peak, and length of the growing season. Furthermore, AGDD for SOS was
significantly lower during the 1990s than the 1980s. NDVI values at SOS did not detect
this change. There are limitations with using NDVI to monitor phenological changes in
these regions because of snow, the large extent of conifers, and clouds, which restrict the
composite period. In addition, differing processing and spectral characteristics restrict
continuity between AVHRR and MODIS NDVI data sets.
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1. Introduction

[2] Since the late nineteenth century the global annual
surface temperature has increased 0.6 ± 0.2�C with the
largest temperature increases of the most recent warming
(1976 to present) occurring over the midlatitude and high-
latitude continents of the Northern Hemisphere [Houghton
et al., 2001]. Extent of annual snow cover also decreased
during this time period over the Northern Hemisphere
[Groisman et al., 1994]. Alaska has been particularly
sensitive to these changes. Mean annual temperatures in
Alaska have increased by 3�C since the 1960s, the largest
regional warming of any state in the United States [Weller et
al., 1999]. Furthermore, day-to-day temperature variability
has decreased in the Northern Hemisphere [Karl et al.,
1995]. Globally, daily minimum temperature has increased
at a faster rate than daily maximum temperature resulting in
a decrease in the diurnal temperature range [Karl et al.,

1991; Easterling et al., 1997]. In the United States,
decreases have been strongest during autumn, but in Alaska
there have been strong decreases throughout the year [Karl
et al., 1993]. In addition, a 400-year Arctic temperature
record reconstructed from proxy data shows that the Arctic
temperatures of the twentieth century are the highest of the
past 400 years [Overpeck et al., 1997].
[3] Additionally, satellite data have been used to monitor

intrannual and interannual seasonal changes. Passive and
active microwave have been effective at monitoring terres-
trial snow cover and seasonal thawing in boreal regions
[Wissman, 2000; Derksen and Goodison, 2003; Kimball et
al., 2004]. However, active microwave was not useful for
detecting spring leaf flush in the Alaska boreal forest
[Verbyla, 2001]. On the other hand, AVHRR NDVI from
the past two decades showed an increase in NDVI at
northern latitudes that many have been attributed to a longer
growing season [Myneni et al., 1997; Tucker et al., 2001;
Zhou et al., 2001; Shabanov et al., 2002; Piao et al., 2006].
However, it is difficult to interpret these NDVI increases
without field validation. NDVI, while commonly used to
monitor vegetation, is only a surrogate measurement of
plant photosynthetic activity so that the translation of the
actual signal requires careful consideration [Tucker, 1979].
[4] A review of multitemporal remote sensing Arctic

research from the past decade found the strongest signal
of NDVI change corresponded with the expansion of the
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tundra shrub [Stow et al., 2004]. The same increases in
AVHRR NDVI, substantiated with corresponding field data
and 50 years of repeat aerial photography, showed an
increase in both range and size of tundra shrub in northern
Alaska and the Pan-Arctic [Sturm et al., 2001; Tape et al.,
2006]. In Arctic Alaska, field biomass data also corre-
sponded to these NDVI changes [Jia and Epstein, 2003;
Walker et al., 2003].
[5] Furthermore, Goetz et al. [2005] found the boreal

biome had undergone substantial changes during 1981
through 2003 that varied by vegetation type. Growing
season length and photosynthetic activity of the tundra
shrub showed temperature-related increases while interior
forests showed a decrease in photosynthetic activity and no
change in growing season length. They attributed these
differences to a variety of influencing factors including fire
disturbances, drought stress, and nutrient limitations on
interior forest regions. Correspondingly, there was a two-
fold increase in annual biomass burning during 1960
through 1990 in the North American boreal region [Lavoue
et al., 2000; Andreae and Merlet, 2001]. Fires are a
significant source of aerosols and aerosols significantly
impact NDVI values even after one-month compositing
periods [Vermote et al., 2002]. Additionally, boreal fire
emissions in the upper Northern Hemisphere were higher
during 2000 and 2003 than the early to mid-1990s
[Kasischke et al., 2005].
[6] Each of these NDVI studies does indicate, however,

that northern latitudes, and especially boreal regions, exhibit
strong evidence of change. In addition, various phenological
field observations across Europe and North America show a
corresponding lengthening of growing season, specifically
an earlier start of season, since the 1950s [Cayan et al.,
2001; Chmielewski and Rotzer, 2001; Fitter and Fitter,
2002; Menzel et al., 2006]. Therefore it is important to
establish whether temporal NDVI can detect these earlier
SOS dates since the spatial extent of satellite data allows for
a larger area of study than field observations. Furthermore,
observed shifts in earlier spring phenological events in both
plant and animal responses have been attributed to anthro-
pogenic climate change [Root et al., 2003, 2005].
[7] Various approaches exist for estimating SOS from

satellite data. Threshold-based approaches utilize either a set
of NDVI values or a value calculated from minimum and
maximum NDVI to determine start, end, and length of
growing season [Lloyd, 1990; Markon et al., 1995; Suzuki
et al., 2003]. Choosing the right threshold is essential
because the threshold determines all metrics but having
one threshold to represent all land cover types is problem-
atic as minimum NDVI values differ by vegetation type
(e.g. deciduous versus evergreen forest). Midpoint value
techniques minimize these problems by using actual NDVI
data to determine the threshold [Kogan, 1995; White et al.,
1997]. Inflection point methods detect time of transition
from the temporal NDVI profile, and metrics are derived
with time derivatives or logistic functions [Moulin et al.,
1997; Zhang et al., 2003]. This method, while useful for
biomes with multiple growing seasons, is problematic for
regions with evergreen, snow effects, and slow rates of
senescence [Reed et al., 2003]. Curve derivative methods
identify SOS from a rapid and sustained increase in the
temporal curve with a delayed moving average [Reed et al.,

1994]. However, this method is difficult to implement in
places like Alaska where year-round NDVI data are often
unavailable because of excessive snow and clouds during
winter months.
[8] Another approach is to model land surface phenology

describing NDVI as a function of accumulated growing
degree day (AGDD). de Beurs and Henebry [2004a, 2005]
used a simple regression model to evaluate whether insti-
tutional changes in Kazakhstan had an effect on land surface
phenology. They found that across different ecoregions their
model explained a significant portion of NDVI variation
and could be used to assess significant changes in land
surface phenology. AVHRR NDVI data were used in both
studies. However, they excluded specific AVHRR data sets,
NOAA-7 and NOAA-11, because of documented sensor-
related artifacts that could result in the detection of spurious
trends [de Beurs and Henebry, 2004b]. Given such exclu-
sions in single sensor studies, it is prudent to determine
whether multisensor data sets are comparable. In a multi-
sensor comparison of AVHRR, Landsat TM, and SPOT
HRV data sets for a grassland site, Goetz [1997] found that
once atmospherically corrected and properly calibrated,
NDVI and surface radiant temperature data sets compared
favorably among the three sensors.
[9] The objective of this research was to determine

whether continuity between AVHRR and MODIS NDVI
is achievable for monitoring phenological changes in boreal
regions. Continuity between NDVI data is essential for
long-term monitoring. MODIS NDVI offers enhanced pro-
cessing and spectral characteristics to the longer AVHRR
NDVI product, potentially making it more suitable for
detecting small phenological changes. This work also eval-
uated whether NDVI, regardless of the sensor, has the
needed sensitivity to detect changes in SOS for high
northern latitudes. NDVI has been widely used to monitor
phenological changes. However, much of this research does
not have field validation. The high northern latitudes have
experienced significant changes and it is important to
establish whether NDVI is the proper tool to detect such
changes in these regions.

2. Methods

2.1. Study Sites

[10] GLOBE students located in or near Fairbanks,
Alaska, made SOS observations from 2001 through 2004
on Betula (Birch), Populus (Poplar), and Salix (Willow) at
their school locations following established GLOBE plant
phenology protocols (http://www.globe.gov). All three trees
are native to Alaska [Viereck and Little, 1972]. Since 1999,
GLOBE students from more than 200 schools around the
world have made over 120,000 phenology measurements at
their schools. Students in Alaska have collected nearly half
of these measurements. This data set, largely untapped for
scientific purposes, provides an exceptional means to vali-
date satellite-derived phenology for boreal regions. SOS
was defined when 50% of the buds for all sites of the same
genus at one school had leafed out or burst. A statewide
land cover map was used to determine land cover for each
GLOBE site [Fleming, 1997]. Sites with similar locations,
land cover classification, and temporal NDVI signatures
were classified into three groups: forest, mixed, and urban.
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Table 1 shows location, land and soil information for the
GLOBE sites.
[11] Additionally, green-up observations at the University

of Alaska-Fairbanks (UAF) campus, made by two separate
UAF research groups, were used. The first group (UAF1)
made green-up observations from 1976 through 2004 and
the second (UAF2) from 1988 through 1998 [Thoman and
Fathauer, 1998]. Both groups made observations near the
UAF campus on the Chena hillside, a site largely populated by
birch [Goldman, 2000]. UAF SOS was defined by ‘‘a distinct
green coloration in the forest’’ [Thoman and Fathauer, 1998].

2.2. Climate Products

[12] Meteorological data were obtained from NOAA
weather stations at the Fairbanks International Airport for
1976 through 2004 (NOAA NCDC, http://www.ncdc.noaa.
gov/oa/climate/research/ushcn/daily.html). Soil temperature
data were obtained from Bonanza Creek Long-Term Eco-
logical Research (LTER) program [Miller, 2004]. The
Bonanza Creek site is located 20 km southwest of Fairbanks
and has two weather stations collecting soil temperature
(LTER1 and LTER2) since 1989. LTER1 is an upland site,
elevation 355 m, with loess parent material. The soil is
classified as a Fairbanks silt loam (coarse-silty, mixed,
superactive typic eutrocryept). LTER2 is a floodplain site,
elevation 130 m, located 150 m from the Tanana River, with
alluvium parent material. The soil at this site is classified as
a Salchaket (coarse-loamy, mixed, superactive, nonacid
typic cryofluvent). To correspond with the appropriate
LTER site, Fairbanks GLOBE sites were categorized into
upland and floodplain groups based on their elevation and
soil classification determined from the county soil survey
[Mulligan, 2004].
[13] Annual accumulated growing degree days (AGDD)

required for SOS were calculated from daily temperatures
greater than 0�C from 1 March through time of observed
SOS. The 1 March start date was chosen based on prior
research by Thoman and Fathauer [1998] for Fairbanks,
Alaska. AGDD for SOS were computed for 1976 through
2004 with daily maximum and mean air temperatures.

AGDD for SOS were also computed for 1989 through
2004 with LTER1 and LTER2 10 cm soil temperatures.
SOS was determined from the UAF1 field observations.
Results from all four data sets were evaluated and validated
with UAF2 and GLOBE SOS observations. The best data
set was chosen to compute AGDD for the rest of the study.

2.3. NDVI Products

[14] Maximum value, 14-day, 1-km resolution AVHRR
NDVI composites for 2001 through 2004 and corresponding
cloud mask files from the USGS Center for Earth Resources
Observation and Science (USGS/EROS, Sioux Falls, South
Dakota) were used. This data set includes data from AVHRR
sensors on board NOAA-16 and 17 satellites and was
atmospherically corrected for ozone, water vapor absorption,
and Rayleigh scattering. In addition, all composites were
cloud screened using an adaptation of the CLAVRR (Clouds
from AVHRR) algorithm developed by Stowe et al. [1998].
It was not possible to use the 7-day 1-km AVHRR NDVI
product because of excessive cloud cover. Maximum value
biweekly 8-km resolution AVHRR NDVI composites for
1982 through May 2004 from the NASA Global Inventory
Monitoring and Modeling Systems (GIMMS) group at
NASA’s Goddard Space Flight Center were also used
[Tucker et al., 2004]. This data set includes data from the
AVHRR sensors on board the NOAA-7 through 17 satellites
and provides improved results based on corrections for
calibration, view geometry, volcanic aerosols, and other
effects not related to actual vegetation change.
[15] In addition, MODIS/Terra Vegetation Indices 16-

Day L3 1 km SIN Grid (MOD13A2) composites for 2001
through 2004 were used (LP DAAC, USGS/EROS, Sioux
Falls, South Dakota). Cloud-contaminated composites

Table 1. GLOBE Site Location and Information

School Latitude, Longitude, Elevation Land Cover, % Group Landform/Soils

Barnette 64.82�, 147.73� 150 m Urban: 89%, MixForest: 11% Urban (U) Floodplains (LTER2) Cryofluvent
Joy 64.86�, 147.73� 144 m Urban: 67%, Shrub: 33% Mixed (M) Floodplains (LTER2) Cryofluvent
Monroe 64.85�, 147.72� 143 m Urban: 67%, Spruce: 33% Mixed (M) Floodplains (LTER2) Cryofluvent
Moosewood 64.88�, 147.79� 168 m Mix Spruce and Shrub: 44%, MixForest: 33%,

Urban: 22%
Forest (F) Uplands (LTER1) Eutrocyept

North Pole 64.75�, 147.34� 167 m Mix Spruce and Shrub: 89%, MixForest: 11% Forest (F) Uplands (LTER1) Eutrocyept
Ticasuk 64.83�, 147.52� 150 m Mix Spruce and Shrub: 78%, MixForest: 22% Forest (F) Uplands (LTER1) Eutrocyept
West Valley 64.85�, 147.82� 122 m Urban: 67%, MixForest: 22%, Shrub: 11% Urban (U) Floodplains (LTER2) cryofluvent

Table 2. Observed Start of Season for Fairbanks by Date and

Accumulated Growing Degree Days Shown in Parenthesis

Year

GLOBE UAF1

Betula Populus Salix Mean Betula

2001 5/15 (121) 5/17 (141) 5/18 (152) 5/17 (138) 5/18 (152)
2002 5/14 (90) 5/15 (102) 5/16 (113) 5/15 (102) 5/18 (137)
2003 5/5 (136) 4/28 (99) 4/28 (99) 4/30 (111) 5/6 (142)
2004 5/1 (108) 5/4 (137) 5/4 (137) 5/3 (127) 5/5 (145)

Figure 1. SOS computed from AGDD mean (open
triangles) and maximum (crosses) air temperatures and
UAF2 and GLOBE field observations (solid circles).
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were identified with corresponding QA files from each
data set. MODIS products were corrected for molecular
scattering, water vapor, ozone absorption, and aerosols
[Vermote et al., 2002]. A constrained-view angle-maximum
value composite (CV-MVC) algorithm to constrain strong
angular variations encountered in the maximum value com-
positing (MVC) process was applied to MODIS data [Huete
et al., 2002]. The 8-day product was not used because too few
unobstructed observations of the study sites were available
from these composite periods.
[16] To ensure snow-free NDVI values, only composites

from the observational season were used. The observa-
tional season began at the end of April for the AVHRR
data sets and in the third week of April for the MODIS
data set. The different start dates were the result of their
different compositing periods. For all data sets, the obser-
vational season ran through the end of September. Fair-
banks’ 55-year climatic record showed mean monthly
snow depths of 25, 0, 0, and 5 cm, respectively for April,
May, September, and October, respectively [Western Re-
gional Climate Center, 2007]. Furthermore, the MODIS
QA files also indicated that there was snow all 4 years
through the third week in April.

2.4. AVHRR and MODIS Models

[17] Corresponding 1-km AVHRR and MODIS NDVI
data sets for 2001 through 2004 for Fairbanks were evalu-
ated. MODIS data were stitched and reprojected to
Albers Equal Area Conic of Alaska to match the AVHRR
product. A 3 by 3 mean filter around each GLOBE site was
applied to these biweekly NDVI composites. AVHRR
composites were cloud screened using an adaptation of
the CLAVRR algorithm developed by Stowe et al. [1998].
Cloud-contaminated composites were identified with
corresponding QA files from each MODIS data set.
Cloud-contaminated composites were replaced with mean
values calculated from composite values preceding and
following cloud-contaminated ones.

[18] Two statistical models, AVHRR and MODIS, were
fitted for each group. The quadratic regression model from
de Beurs and Henebry [2004a, 2004b, 2005] was used:

NDVI ¼ aþ bAGDDþ gAGDD2 ð1Þ

NDVI is all AVHRR NDVI composite values from 2001
through 2004. AGDD is all the corresponding mean AGDD
values from 2001 through 2004. Mean AGDD was com-
puted from the daily AGDD values corresponding to each
14-day AVHRR NDVI composite period. The same was
computed for each 16-day MODIS composite period for the
MODIS models. The intercept (a) represents the NDVI
value at the beginning of the observational season while the
slope parameter (b) measures growing degree days required
to reach NDVI peak and the quadratic parameter (g)
determines the shape of the curve and the length of the
growing season [de Beurs and Henebry, 2004a, 2004b]. It is
important to note that the intercept reflects the beginning of
the observational season and not the start of the growing
season. NDVI values for start of the growing season were
determined from the model equations and field observations
of SOS.
[19] The Mann-Whitney test was used to determine

whether the AVHRR and MODIS NDVI and AGDD data
sets were significantly different. The Mann-Whitney test
was chosen because the data sets were nonnormal and
had unequal sample sizes that were nonpaired. AVHRR
data set had 44 images and a 14-day composite period
while MODIS data set had 40 images and a 16-day
composite period. The coefficient of determination (R2),
adjusted R2 (Radj

2 ), coefficient of variation (CV) and the
root mean square error (RMSE) were calculated for each
model. Simultaneous tests on coefficients were done to
test for significant differences between AVHRR and
MODIS model parameters [Myers, 1990]. Four tests
(T1–T4) were performed on each group’s model param-
eters. T1 tested all model parameters together while T2,
T3, and T4, respectively, tested for individual differences
between AVHRR and MODIS’ intercept, linear coeffi-
cient, and quadratic coefficient, respectively. Additionally,
the Mann-Whitney test was used to determine whether

Table 3. Accumulated Growing Degree Days (AGDD) Required

for Budburst From Budburst Observations and Air and Soil

Temperatures

AGDD

Air Temperature
(1976–2004)

Soil Temperature
(1989–2004)

Maximum Mean LTER1 LTER2

Mean 391 153 28 24
SD 45 22 24 21
Range 303–478 116–201 0–68 0–70
CV 12% 14% 83% 88%

Table 4. Models for AVHRR and MODIS 1-km NDVI Data Sets

Group Data Model Radj
2 RMSE

Urban AVHRR NDVI = 0.180 + 5.684E�4AGDD � 2.383E�7AGDD2 0.78 0.052
Urban MODIS NDVI = 0.240 + 5.137E�4AGDD � 2.077E�7AGDD2 0.80 0.048
Mixed AVHRR NDVI = 0.251 + 5.263E�4AGDD � 2.192E�7AGDD2 0.73 0.054
Mixed MODIS NDVI = 0.290 + 5.214E�4AGDD � 2.031E�7AGDD2 0.83 0.046
Forest AVHRR NDVI = 0.288 + 6.509E�4AGDD � 2.891E�7AGDD2 0.71 0.068
Forest MODIS NDVI = 0.402 + 6.087E�4AGDD � 2.479E�7AGDD2 0.77 0.060

Table 5. The p-Values of the Simultaneous Tests on Coefficients

for AVHRR and MODIS Models

Test Urban Mixed Forest

T1 (all) <0.0001 <0.0001 <0.0001
T2 (intercept) <0.0001 <0.0001 <0.0001
T3 (linear) <0.0001 0.8821 <0.0001
T4 (quadratic) <0.0001 <0.0001 <0.0001
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each sensor’s NDVI and AGDD values at SOS were
significantly different from one another.

2.5. SOS Test

[20] Biweekly NDVI composites from 1982 through
2003 were extracted from the 8-km AVHRR data set for
each GLOBE site. Several sites were in the same 8-km pixel
because of their proximity to one another and as a result the
sites were classified into two groups. The first group was a
combination of urban, shrub and forest land cover similar to
the mixed group from Table 1. The second group was a
combination of spruce and mixed forest land cover similar
to forest group from Table 1. As discussed above, end of
April through September composites were used to ensure
snow-free NDVI values.
[21] Annual SOS for 1982 through 2003 was determined

from the UAF1 observations. These field observations were
converted to AGDD and composited to the same biweekly

time period as the 8-km AVHRR data set and mean AGDD
for the SOS composite period was used. These AGDD
values were applied to the AVHRR and MODIS models to
compute NDVI at SOS for each year. These results were
compared to NDVI values at SOS from the 8-km AVHRR
data set. The Wilcoxon signed rank test was used to
determine whether NDVI values from the 1-km AVHRR
and MODIS models were significantly different than the
8-km NDVI values. The Wilcoxon signed rank test was
chosen because the data sets were nonnormal but the
samples were paired.

3. Results

[22] Overall, field observations made by GLOBE students
showed similar annual SOS dates by species (Table 2).
However, in 2003 Betula budburst was one week later than
the other tree species. Linkosalo [1999] also found a similar
uniformity of phenological events between different species
in Finnish forests. Overall, GLOBE students’ observations
were earlier by four days or less (14 to 35 AGDD) than the
UAF1 researchers’ observations. In Fairbanks, Thoman and
Fathauer [1998] found green-up began on lower elevations
of south facing hillsides, spreading quickly down valley
floors, and moving more slowly up higher elevation hill-
sides. Most of the GLOBE sites were located in the valley
whereas UAF1, and UAF2, sites were located on Chena
Hillside near the UAF campus. UAF2 only made observa-
tions from 1988 through 1998. Overall, their observations

Figure 2. Mean biweekly AVHRR (solid triangles) and
MODIS (solid squares) NDVI with seasonal trajectories at
start date of each composite period for (a) urban, (b) mixed,
and (c) forest groups.

Figure 3. NDVI and AGDD at SOS for 1-km AVHRR
(solid triangles), 8-km AVHRR (open circles) and MODIS
(solid squares) NDVI for (a) Group 1/Mixed and (b) Group
2/Forest.
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were later by four days or less than the UAF1 observations.
[23] Table 3 shows mean, standard deviation, range, and

coefficient of variation (CV) for each of the four AGDD
data sets. The air temperature data sets resulted in the lowest
coefficient of variations. Figure 1 shows actual and com-
puted SOS for Fairbanks from the two air temperature data
sets. The soil temperature data sets were not used to predict
SOS because of their high standard deviations and coeffi-
cients of variations. AGDD was computed from daily mean
air temperature because overall it predicted SOS best.
AGDD threshold was 153 with values ranging from 116
to 201.
[24] The 1-km AVHRR and corresponding MODIS

NDVI curves showed similar seasonal temporal patterns
for all three sites (Figure 2). However, MODIS values were
higher and remained higher throughout the season. MODIS
data also had less interannual variability during June
through August, the height of the growing season. NDVI
data sets were significantly different (a = 0.05) from one
another while their corresponding AGDD data sets were
not, indicating differences were related to sensor type rather
than composite periods.
[25] The AVHRR and MODIS quadratic regression mod-

els fit well for the urban, mixed, and forest groups. MODIS
models performed better than their corresponding AVHRR
models for all three groups. Radj

2 ranged from 0.71 to 0.83
with an average of 0.73 and 0.80 for the AVHRR and NDVI
data, respectively (Table 4). The simultaneous tests on
coefficients showed that the MODIS and corresponding
AVHRR models were significantly different (a = 0.05) for
each of the three groups. Additionally, with the exception of
the linear coefficient for the mixed group, the AVHRR
coefficients and intercept were significantly different from
their corresponding MODIS coefficients and intercept

(Table 5). Table 6 shows the computed NDVI values at
SOS from the NDVI models and the AGDD threshold. The
MODIS NDVI values were significantly higher (a = 0.05)
than the AVHRR values for all three groups.
[26] Figure 3 show the computed and actual NDVI values

at SOS for the mixed and forest groups. MODIS SOS values
were significantly higher (a = 0.05) than the 1 and 8 km
AVHRR SOS values for Group 2 (forest). MODIS SOS
values were not significantly different (a = 0.05) from the
8-km AVHRR SOS values for Group 1 (mixed). However,
they were significantly different from the 1-km AVHRR
SOS values (Tables 7 and 8). Additionally, UAF1 SOS field
observations for the 1980s and 1990s showed significant
decadal differences (a = 0.05) between 1980s and 1990s
AGDD values (Table 9). The 1990s had lower AGDD
values (123–177) than the 1980s (146–201). All three
NDVI data sets showed interannual variation in NDVI
values at SOS, but they did not detect significant decadal
differences between 1980s and 1990s values as the AGDD
data did (Tables 7 and 8).
[27] Figure 4 shows annual AGDD, computed from mean

air temperature, for observed and predicted SOS. No trend
in AGDD was shown in observed SOS and the slope was
not significantly different from 0. There was interannual
variation in both DOY and AGDD during this time period
with no discernible correlation between DOY and AGDD.
The range of DOY and AGDD were 120 to 147 and 102 to
227, respectively. On the other hand, AGDD at SOS was
relatively consistent across a range of DOY dates for
predicted SOS. AGDD were 146 to 158 while DOY ranged
from 120 to 146.

4. Discussion

[28] Results indicate that there are significant limitations
in continuity between AVHRR and MODIS NDVI data sets,
which make long-term SOS monitoring problematic for
environments like Fairbanks, Alaska. Ideally, a methodolo-
gy for determining SOS from NDVI data should be devel-
oped with AVHRR NDVI, and then applied to MODIS
NDVI. AVHRR NDVI has a significantly longer time
series, which strengthens the validation process. MODIS
NDVI has enhanced processing and spectral characteristics,
which make it more suitable for detecting small changes in
SOS. The wider spectral NIR band of AVHRR is more
sensitive to water vapor and dampens NDVI values [Chilar
et al., 2001]. Furthermore, there is an increased chlorophyll
sensitivity of the MODIS red-band [Gitelson and Kaufman,
1998; Huete et al., 2002].
[29] At the start of each observational season, MODIS

values were higher than AVHRR and remained higher
throughout the season for all three land cover groups. Each
of the model parameters were tested individually to ascer-
tain whether the models were different solely because of the

Figure 4. AGDD for observed SOS (solid triangles) and
predicted SOS (solid squares) by year. Regular font
indicates observed SOS, and italic indicates predicted
SOS. Bold indicates observed and predicted SOS have
same DOY and AGDD for that particular year.

Table 6. NDVI at SOS Calculated From AVHRR and MODIS Models and AGDD Threshold and Range

NDVI

Urban Mixed Forest

AVHRR MODIS AVHRR MODIS AVHRR MODIS

Minimum 0.243 0.297 0.309 0.348 0.360 0.469
Mean 0.261 0.314 0.326 0.365 0.381 0.489
Maximum 0.285 0.335 0.348 0.387 0.407 0.514
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intercept parameter, which represented the initial value for
the observational season. If the only significant difference
between the models was the intercept parameter then adding
a designated offset to the AVHRR values would make the
data sets continuous. However, the models had significantly
different intercepts as well as linear and quadratic coeffi-
cients. The models also produced significantly different
NDVI values for SOS. The coefficients affect peak, length,
and overall shape of each curve which ultimately result in
two very different NDVI curves. Such differences make
long-term monitoring with both data sets difficult.
[30] Huete et al. [2002] and Brown et al. [2006] showed

similar findings to this work when comparing AVHRR and
MODIS NDVI time series data. Huete et al. [2002] com-
pared 1-km MODIS NDVI biweekly composites with
corresponding AVHRR NDVI biweekly composites across
various North American sites for the 2000–2001 season.
Brown et al. [2006] compared 500-m MODIS NDVI
biweekly composites with 8-km AVHRR GIMMS NDVI
biweekly composites for 2000 through 2004 across various
sites throughout the world. Brown et al. [2006] attributed
MODIS’ higher NDVI values to the sensors’ different
processing and spectral characteristics.
[31] In addition to the greater sensitivity of MODIS’ red

and NIR bands, these differences also restricted impacts
from clouds, aerosols, and water vapor. Aerosols signifi-
cantly impact NDVI values and their effects remain in data
even after one-month compositing periods [Vermote et al.,
2002]. Huete et al. [2002] attributed sensor differences to
these same factors in addition to MODIS’ improved com-
positing method (CV-MVC). CV-MVC reduces spatial and
temporal discontinuities that result from maximum value
compositing [Goward et al., 1991; Huete et al., 2002]. The
AVHRR water vapor effects did not apply for this study
because a validated water vapor correction was applied to
all, past and subsequent, 1-km AVHRR time series data as
of 2001 [DeFelice et al., 2003]. Nonetheless, compositing
and aerosols factors did apply for this study. AVHRR NDVI
data were composited with 14-day maximum values where-
as MODIS data were composited with 16-day constrained
view angle maximum values. Moreover, boreal fire emis-

sions in the high Northern Hemisphere were higher during
2000 and 2003 than the early to mid-1990s [Kasischke et
al., 2005]. Kasischke et al.’s [2005] findings are especially
relevant given that NDVI data from 2001 through 2004
were used in this study.
[32] Apart from continuity issues, the advancement of

SOS that has been repeatedly observed and documented
across Europe has averaged 2.5 days per decade [Menzel et
al., 2006]. Therefore in order to effectively monitor long-
term seasonal changes, NDVI, regardless of sensor type,
must be sensitive enough to detect such changes. Further-
more, the late 1970s through the mid 1990s have been
classified as a warm Pacific Decadal Oscillation (PDO)
phase, which coincides with dry periods for interior Alaska
and warm winter and spring temperatures for northwestern
North America [Minobe, 2000; Mantua and Hare, 2002].
Additionally, the 1990s was the warmest decade in the
northern Pacific region since the 1850s [Storm et al.,
2004]. Theoretically, warmer spring temperatures would
result in an earlier budburst and SOS. However, significantly
drier conditions could delay budburst.
[33] In the scope of this current research it is difficult to

ascertain whether the SOS changes detected in the 1980s
and 1990s AGDD values resulted from the Pacific Decadal
Oscillation or a combination of factors. The data show that
the 1990s had significantly fewer AGDD at budburst (Table
9). But such a shift could have resulted from any number of
climatic and environmental factors, local as well as larger
ones such as the PDO. The results showed that the AVHRR
and MODIS data sets did not detect the decadal changes in
SOS (Tables 7 and 8). Furthermore, each NDVI data set was
significantly different for the forest group (Table 8). MODIS
values were consistently higher and the 1-km AVHRR
values consistently lower than the 8-km AVHRR values.
The MODIS values were similar to the 8-km AVHRR
values for the mixed group, but the 1-km AVHRR data sets
were significantly different and lower than the other data
sets (Table 7).
[34] Nonetheless the data does indicate a corresponding

degree of sensitivity is required from the NDVI data sets for
monitoring SOS. Figure 4 shows that biweekly NDVI

Table 7. NDVI at SOS for the 1980s and 1990s for Group 1 Mixed Landcover

Group 1 (Mixed)

AVHRR (8 km) AVHRR (1 km)a MODIS (1 km)

1980s 1990s 1980s 1990s 1980s 1990s

Minimum 0.313 0.294 0.324 0.315 0.363 0.354
Mean 0.377 0.366 0.343 0.336 0.382 0.375
Maximum 0.436 0.422 0.363 0.364 0.402 0.403

aSignificantly different at 0.05 level.

Table 8. NDVI at SOS for the 1980s and 1990s for Group 2 Forest Landcover

Group 2 (Forest)

AVHRR (8 km)a AVHRR (1 km)a MODIS (1 km)a

1980s 1990s 1980s 1990s 1980s 1990s

Minimum 0.376 0.405 0.378 0.367 0.487 0.476
Mean 0.439 0.443 0.402 0.392 0.509 0.500
Maximum 0.489 0.525 0.426 0.427 0.532 0.533
aSignificantly different at 0.05 level.
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compositing periods have limited capabilities for detecting
interannual variability in SOS. Fisher and Mustard [2007]
found phenological variability on the ground could be
observed from satellites with spectral mixture analysis, but
the observational metric had to have compatible meaning.
However, they also found interannual phenological vari-
ability recorded by satellites may be dampened by 40 to
50% compared to those recorded by ground-based pheno-
logical observations. Furthermore, Fisher et al. [2007]
found satellite phenology derived from a spectral mixture
analysis (SMA) responded to opening of leaves whereas
phenology derived from NDVI was highly dependent on the
spectral contrast of the red to near infrared transition. They
noted that since soil and litter have a slightly higher NDVI
than snow, soil and litter may complicate the NDVI signal at
SOS, which may result in an earlier onset prediction. At
high latitudes ground cover, which is nearly continuous
under sparse canopies, would also affect the NDVI signal.
[35] At the same time, one must be prudent with AGDD.

Figure 4 also indicates that the AGDD model was a poor
predictor of SOS. It did not capture the interannual vari-
ability of AGDD at SOS and DOY predictions more closely
corresponded to observations than AGDD. Fisher et al.
[2007] found that an AGDD model showed little improve-
ment from an DOY model in predicting onset of spring in
deciduous forests throughout New England. Furthermore,
they found that satellite observations directly linked to
climate could not adequately explain variability seen in
temperate deciduous forests. They also found that forests in
different regions did not respond similarly to climate
variability as many ground-based phenological studies sug-
gest. However, it should be noted that their work focused on
detecting microscale variations in phenology metrics and in
such cases dampening effects are due, in part, to discrep-
ancies in observational scales.
[36] In Alaska, detecting SOS from NDVI is limited by

late spring snow and evergreen vegetation. MODIS QA files
indicated there was snow through the third week of April
during 2001 through 2004. Correspondingly, the most rapid
increase in MODIS NDVI occurred from the 7–22 April
composite to the 23 April to 8 May composite period (data
not shown). As noted previously, the start of the observation
period differs from the start of the growing season. The
observation period began the third week of April for
MODIS data set, and end of April for the AVHRR data
sets while field observations from GLOBE students and
UAF1 researchers showed SOS occurred during the first
two weeks in May for all four years. As previously
mentioned, Fairbanks’ climatic record showed snow depths
averaging 25 cm for April while May had no snow.
Therefore, we can assume that NDVI was detecting spring
leaf flush rather than the melting of snow, which would also

increase NDVI values. However, Fisher et al. [2007] found
satellite phenology derived from a spectral mixture analysis
(SMA) responded to opening of leaves whereas phenology
derived from NDVI was highly dependent on the spectral
contrast of the red to near infrared transition. They noted
that since soil and litter have a slightly higher NDVI than
snow, soil and litter may complicate the NDVI signal at
SOS which may result in an earlier onset prediction.
[37] Delbart et al. [2005, 2006] also found that snow

restricted the efficacy of monitoring SOS with NDVI in
Siberia. They showed that normalized difference water
index (NDWI), similar to NDVI but calculated from the
short-wave infrared band instead of the red band, differen-
tiated between snowmelt and green up and was more
efficient at estimating SOS. However, this method had
limitations in forests dominated by conifers which were
what the forested sites in this study predominately were
(Table 1).
[38] Effects of clouds, and subsequently composite

length, also limit NDVI as a monitoring tool for SOS in
boreal regions such as Alaska. Compositing, while neces-
sary for mitigating cloud effects, restricts the sensitivity of
NDVI to detect phenological changes. Furthermore,
Kasischke and French [1997] found that clouds and atmo-
spheric haze had significant effects on the AVHRR NDVI
signature for boreal forests in Alaska even after compositing
procedures were applied to the NDVI data. Short (<7 days)
composite periods are required to detect such changes as
above. However, weekly AVHRR and MODIS composites
could not be used in this study because of high cloud levels.
Ahl et al. [2006] also found composites of less than 7 days
were required to capture the rapid green-up of a deciduous
broadleaf forest in northern Wisconsin but 4 out of 5 days
the daily MODIS products could not be used due to clouds.

5. Conclusions

[39] This research shows differing processing and spectral
characteristics of the AVHRR and MODIS sensors restrict
continuity between the NDVI data sets for Fairbanks,
Alaska. The AVHRR and MODIS regression models
resulted in significantly different NDVI curves and subse-
quently different start, peak, and length of growing seasons
in all three land cover groups. Such differences make long-
term SOS monitoring with a combined AVHRR and
MODIS data set problematic.
[40] Additionally, the results from this study coupled

with the well documented advancement of the time of
spring shown in the literature, show that a more sensitive
predictor than NDVI is needed to monitor changes in
start of growing season. AGDD SOS values were signif-
icantly lower during the 1990s than the 1980s. However,
the AVHRR and MODIS regression models as well as the
8-km AVHRR data set did not detect this decadal shift.
NDVI, while useful for its spatial coverage, has limita-
tions in boreal regions due to snow, the large extent of
conifers, and clouds, which restrict the composite period.
Cloudy conditions found in these regions prohibit use of
a composite period shorter than 14 days and a biweekly
composite period has limited capabilities for detecting
gradual changes in SOS.

Table 9. AGDD at SOS for the 1980s and 1990s

AGDD 1980sa 1990sa

Minimum 146 123
Mean 174 148
Maximum 201 177

aSignificantly different at 0.05 level.
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